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Abstract. Ocean alkalinity enhancement (OAE) research can be supplemented by studying the natural alkalinity cycle. In this 

chapter, we introduce the concept of natural analogs to ocean alkalinity enhancement. We describe earth system processes 10 

relevant to OAE deployment and its measurement, reporting, and verification. We then describe some suitable natural analog 

locations that could serve as study sites to understand how these processes may interact with OAE. Approaches to examining 

the geological record are also considered. Practical considerations for establishing a natural analog study are discussed, 

including geochemical mass balance; choosing a site; establishing a control; choosing a measurement suite and platform; and 

coordinating with ocean models. We identify rivers and their plumes, glacial fjords, whiting events, and basinal seas with 15 

elevated alkalinity, as promising candidates for initial natural analog studies. This chapter is not meant to be prescriptive, but 

instead is written to inspire researchers to creatively explore the power of natural analogs to advance our understanding of 

OAE.  

1.1 A definition of natural analogs 

Despite its residence time of about 100,000 years, there is a vigorous and dynamic alkalinity cycle in the ocean. The spatial 20 

and temporal patterns of alkalinity concentrations and fluxes are intimately linked with the cycling of dissolved and gaseous 

carbon dioxide (CO2), as well as the production and dissolution of calcium carbonate (CaCO3). There may be a number of 

other locally relevant processes, such as anaerobic remineralization, that also consume and produce alkalinity. Many OAE 

approaches are based on established geochemical weathering and acid-base reactions, and deploying these approaches will 

benefit from an understanding of earth’s natural processing of alkalinity. These processes operate all around us, right now, at 25 

scale. For instance, the chemical and physical weathering of terrestrial rocks produces roughly 60 Tmol alk yr-1 that is delivered 

to the oceans via rivers. This input is balanced by global CaCO3 burial in ocean sediments (Middleburg et al., 2022). The 

calcium carbonate cycle buries roughly 36 Tmol alk yr-1 on shelves and along the coasts, and roughly 23 Tmol alk yr-1 in the 

open ocean (Middelburg et al., 2020). However, open-ocean CaCO3 production of >100 Tmol yr-1 greatly exceeds deep ocean 

burial, resulting in the recycling of ~77 Tmol alk yr-1 via CaCO3 dissolution to keep the system at steady state (Milliman et al., 30 

1999, Berelson et al., 2007, Sulpis et al., 2021). Other mineral reactions, such as silicate weathering and reverse weathering, 

also produce and consume alkalinity within the ocean system. These alkalinity inputs, outputs, and internal cycles can serve 
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as natural analogs to processes that may respond to OAE, providing insight into what OAE deployment might look like at 

scale.  

Here, we define “Natural analogs” as earth system processes that 1) resemble OAE deployments, or 2) can answer 35 

open questions about the feasibility, efficacy, and impacts of these deployments at scale. Natural analogs may offer test beds 

 
Figure 1: Images of some potential natural analog study sites. a) the Mississippi River plume in the Gulf of Mexico. b) a 

glacial fjord in Alaska, filled with mineral dust. c) Coccolithophore blooms in the Black Sea, visualized by satellite. d) 

Whiting events in the Bahamas. A, C, D are from NASA. B is from A. Gagnon. 
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for sensor development across alkalinity and carbon gradients, could serve as real-world frameworks for interpreting laboratory 

and mesocosm experiment results, and could serve as validation tools for modelers to study relevant OAE processes. In many 

cases natural carbonate chemistry parameters covary with other environmental variables such as temperature, salinity, 

nutrients, etc. Identifying alkalinity as the driver of a specific response in these systems can be challenging and must be 40 

carefully assessed. This drawback to natural analogs can also be a strength. Demonstrating the effect of alkalinity, in 

combination with a suite of other stressors or drivers, can be a powerful way to evaluate the real-world effect of OAE 

deployments at scale, without the need for expensive and time-consuming field trials. In addition, natural analogs, including 

periods of enhanced ocean alkalinity in the geological past, have the potential to elucidate longer-term, acclimated responses 

to OAE-relevant conditions.  45 

 

1.2 The benefits and drawbacks of natural analogs  

 

Natural analogs offer all of the benefits and drawbacks that come with the complexity of earth systems. They should 

be viewed as one of many approaches available to OAE researchers. Laboratory experiments (Iglesias-Rodriguez et al., 2023, 50 

this volume) offer ultimate control over conditions and variables, but their results can be challenging to apply to the real world. 

Mesocosms (Riebesell et al., 2023, this volume) are one step up in complexity, and benefit from not requiring permits to 

operate, but are costly and limited in their spatial and temporal applications. Field experiments (Albright et al., 2023, this 

volume) are valuable, and ultimately will most closely resemble real-world deployments. However, they require permits and 

resources that, currently, make them difficult and sometimes prohibitive to execute. Natural analogs can supplement these 55 

approaches in terms of complexity, scope, and scale. They will not necessarily give “clean” results for alkalinity effects alone; 

rather they offer a rich perspective on how OAE may look at scale, without requiring field experiments.  

Examples of recent studies of natural analogs in the context of OAE are still limited, however, previous research on 

ocean acidification (OA) highlights some of the difficulties and complexity associated with natural sites (e.g., Hall-Spencer et 

al., 2008, Tyrrell et al., 2008; Kroeker et al., 2013; Manzello et al., 2014; reviewed in Rastrick et al., 2018). Relevant examples 60 

for OAE may include large river plumes and estuarine systems where runoff into coastal systems - depending on catchment 

and underlying bedrock - may create interacting gradients in environmental parameters such as alkalinity, particulate matter, 

dissolved inorganic carbon (DIC), salinity and/or macronutrients (Raymond & Cole, 2003; McGrath et al., 2016; Gomez et 

al., 2021), with each of these factors potentially triggering specific species-level or ecosystem responses.  

Effects of covarying factors may be large and can wrongfully be attributed to the main variable or process of interest 65 

(in this case, alkalinity enhancement). To some degree, targeted site selection can minimize the number of confounding factors. 

Ideal locations for specific process studies would be sites with distinct spatial and/or temporal gradients in alkalinity and 

limited fluctuations in other environmental variables (e.g., temperature and salinity, particulate matter, nutrients).  

 

2 Some defining qualities of natural analogs   70 
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2.1 Earth system processes and their relationship to OAE 

The delivery of alkalinity to the oceans via OAE will interact with the natural alkalinity cycle in various ways depending 

on the approach, scale, and location of deployment. Accordingly, the relationship between OAE and earth system processes 

will be expressed on a variety of spatial and temporal scales. We depict relevant earth system processes as an oval, with its 

size and orientation determined by the temporal and spatial scale needed to characterize its influence in the earth system (Figure 75 

 
Figure 2: Processes relevant to natural analogs for OAE over a range of length and timescales. Various measurement 

platforms are shown in the margins, with their associated operating time and lengthscales. Studies investigating OAE should 

match measurement strategies to the appropriate processes being investigated. Figure concept adapted from Chai et al. 

(2020) and Bushinsky et al. (2019).  
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2). Mineral dissolution, for example, is typically studied at the micron-to-millimeter scale of the mineral-seawater interface. 

But, depending on the mineral in question, dissolution rates can occur on the timescale of years. Similarly, calcium carbonate 

precipitation occurs rapidly at small scales, but at the platform or reef scale, observations must be made over days, weeks, or 

months to fully understand calcification budgets. Its oval is thus oriented at shorter timescales, but a much broader spatial scale 

than mineral dissolution.  80 

 Earth system processes do not always operate in isolation, but instead overlap and interact with each other, creating 

higher-order effects that may generate unexpected and nonlinear responses at a range of spatial and temporal scales (depicted 

schematically as overlapping ovals, culminating in the gray envelope in Fig. 2). Reactions with minerals could ultimately 

engage with the carbon cycle and ocean-atmosphere CO2 fluxes. Particle dynamics could feed back on mineral reaction rates, 

or begin to affect the biological pump, or both. Whether intentional field experiments engage these higher-order effects will 85 

depend on their scale in both space and time. The benefit of natural analogs is that these effects are likely already fully coupled 

with each other. Studying natural analogs can thus test both (quasi) steady-state and transient effects associated with the 

interactions of these numerous earth system processes. The large and at times undefined scale in both time and space presents 

a fundamental scale challenge for studying earth system processes, and is a lesson that should be taken to heart by the OAE 

community. Below we discuss some of these earth system processes that have direct relevance to OAE. 90 

 

Mineral dissolution. Silicate weathering is the most significant net carbon sink on geological timescales, and relevant 

dissolution reactions should be occurring in many environments around the globe, including marine settings. These reactions 

are often slow, taking place on the timescale of months to years, or even longer. In the context of OAE, mineral dissolution 

reactions will be limited to the treatment location where alkalinity production can be monitored. Because dissolution matrices 95 

are often complex (e.g. soils, sediments, and seawater), in situ dissolution rates are often hard to model and interpet. 

Interrogating real-world dissolution rates of these materials, either suspended in seawater or in sedimentary systems, would 

place useful constraints on dissolution rates and alkalinity production. Understanding real-world controls on secondary 

precipitation and subsequent alkalinity consumption will also be critical.  

 100 

CaCO3 precipitation. Carbonate minerals are considered some of the most reactive on the earth’s surface, and their 

precipitation and dissolution occurs on faster timescales than most silicate mineral reaction rates. There is a major gap in our 

understanding of how OAE will interact with the ocean’s CaCO3 cycle. In the environment, biological and inorganic 

precipitation are related to a number of complex, interrelated natural factors. Surface seawater is already supersaturated with 

respect to most CaCO3 minerals, and CaCO3 precipitation is thought to be kinetically limited (Sun et al., 2015). Temperature, 105 

Mg2+ and other ionic constituents, dissolved/particulate organic matter, and the in situ biological community, all may influence 

the rate and spatial extent of CaCO3 precipitation. These factors will change both in space and time, meaning that the spatial 

scale of precipitation is often large and poorly defined.  
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Particle dynamics. Several OAE approaches involve adding fine-grained material to the ocean surface, and letting it 110 

dissolve to produce alkalinity. Currently, we have limited understanding of how the sustained, large-scale addition of particles 

would influence seawater turbidity, flocculation, particle settling velocities, and the marine ecosystem on multiple levels. There 

may be feedbacks associated with mineral dissolution and precipitation reactions within the particle field. These particle 

dynamics occur on short spatial scales, but small particles could persist for long periods of time in the water column, leading 

to relatively long exchange timescales for some particle types and chemistries (Bacon and Anderson, 1982).  115 

 

Plume mixing and spreading. The enhanced-alkalinity seawater plume resulting from an OAE deployment will be subject 

to a variety of physical forcings, and will spread out both horizontally and vertically over time. Plume dispersal will be 

influenced by currents, eddies, seabed topography, and other physical characteristics. Plumes of solid material will behave 

differently than plumes of dissolved alkalinity. The plume’s dispersal will dilute its alkalinity, but will increase its surface 120 

area, creating tradeoffs for CO2 uptake efficiency (He and Tyka, 2023, Wang et al., 2023). Alkalinity will also be lost below 

the mixed layer due to vertical mixing processes and circulation patterns.  

 

Ecosystem responses. The ecosystem response to OAE is currently unknown (Bach et al., 2019). Responses may be quite 

variable, and will involve both immediate “shock” responses, and longer-term acclimated responses. Imagine exposing a 125 

marine ecosystem to a dispersing plume of alkalinity. Some parts of that ecosystem may sit directly in the outfall and 

experience sustained impacts, while others may experience periodic “whiffs” as the periphery of the plume disperses and shifts 

with water circulation. In the pelagic environment, the ecosystem may move along with the plume.  

One ecosystem impact on OAE efficiency is whether it will stimulate biological calcification, either in open-ocean 

calcifiers such as coccolithophores, or in coastal ecosystems such as coral reefs or shellfish habitats. In many cases, OAE will 130 

decrease the pCO2 of seawater, potentially limiting the availability of CO2 for photosynthesis for some organisms. In the case 

of solid additions, impurities and other constituents could dissolve along with alkalinity and could begin to interfere with the 

structure and function of marine ecosystems. How these effects are translated to higher trophic levels, and if there are any 

direct impacts on higher trophic level organisms, are poorly understood.  

 135 

Air-sea CO2 exchange. The OAE approach to carbon dioxide removal (CDR) relies on the equilibration of an alkaline 

seawater parcel with the atmosphere. Air-sea gas exchange is thus a fundamental component of OAE and may play an 

important role in limiting the timescale of CDR. Carbon dioxide dynamics and equilibration timescales are generally 

understood, and occur on timescales of several weeks to up to a year (Jones et al., 2014). The spatial scales of this equilibration 

depends on the surface expression of a water mass and its physical and chemical characteristics. How air-sea CO2 dynamics 140 

specifically change with alkalinity enhancement and the overall carbonate system in seawater is not well characterized.  
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Cumulative earth system feedbacks. Eventually, and especially when considering OAE at gigaton scales, the processes 

listed above will blend with each other, leading to large-scale feedbacks of the biogeochemical ocean system. These feedbacks 

will become increasingly large and diffuse, essentially becoming part of the earth’s biogeochemical cycling of alkalinity and 145 

carbon. If OAE stimulates CaCO3 precipitation, alkalinity outputs could fundamentally change at the platform, basin, or global 

ocean scale. Ecosystem feedbacks, if sustained, could lead to significant reorganization of the biological pump with 

implications for the organic carbon cycle and the balance of CO2 fluxes at the ocean surface.  

 

2.2 A non-exhaustive list of OAE natural analogs  150 

The processes and systems discussed in this chapter are not meant to be prescriptive or limiting. We encourage researchers 

to think creatively about the problems associated with OAE deployment – whether they be technical or scientific – and find 

suitable natural systems to study solutions to these problems. Many of the current open questions may get solved or become 

moot in subsequent years. The natural analog concept can, and should, continue to be applied even as our knowledge base for 

OAE grows and evolves over time.     155 

Ideal natural analogs for all of the above processes, and how they will interact with OAE, will typically exist at system 

boundaries and across defined gradients in carbonate chemistry. For relevance to OAE, it will be important to constrain the 

interactions between alkalinity and the system in question, and ultimately the associated implications for the efficiency, safety, 

and scalability of OAE.  

 160 

Rivers and their plumes and deltas (Fig. 1a). There may be opportunities to study natural river chemistries and their 

associated plume and sediment dynamics in regions with defined, sustained inputs to the marine system. Rivers deliver 

most of the alkalinity to the ocean, and dedicated surveys of these plumes across a variety of river compositions and plume 

geometries will provide critical information for large-scale alkalinity enhancement deployments. Deltaic environments 

may be useful to study the impact of particle loading and sediment-water interactions.  165 

 

Glacial fjords and runoff into the marine system (Fig. 1b). The delivery, settling, and reaction of glacial flour in semi-

enclosed or restricted basins could be useful for mineral dissolution/precipitation, particle dynamics, and plume evolution.  

 

Basin-scale systems with unique geochemistries and ecologies (Fig. 1c). The larger the spatial and temporal scale, the 170 

larger the natural analog system boundary must become. The advantage of natural analogs is that these large-scale 

feedbacks can be assessed immediately. As proposed by Bach et al. (2021), alkalinity in the Black Sea is much higher 

than that of ‘normal’ seawater, and could serve as a basin-scale analog to investigate long-term effects of OAE.  

 

The Bahamas carbonate platform and slope (Fig. 1d): “Whiting” events– large plumes of suspended CaCO3 that appear 175 

in the Bahamas – are poorly understood, and might be an ideal natural analog to study how temperature and other seawater 
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properties, will interact with OAE to promote the homogenous formation of CaCO3 minerals from seawater. Whitings 

may also elucidate the role that suspended sediments play in stimulating CaCO3 precipitation (Geyman et al., 2022). 

 

Seafloor weathering of basalts. Low-temperature seawater-basalt interactions could be critical for alkalinity production, 180 

mineral dissolution, carbonate precipitation, and trace metal impacts.  

  

Beach locations with unique mineral sand compositions. Black sand or olivine beaches present unique opportunities to 

study integrated, long-term effects of mineral addition. There may also be opportunities to study ongoing beach 

nourishment projects that, while not strictly natural analogs, could provide systems for study without the need for 185 

additional permitting.  

 

Wastewater and other anthropogenic outfalls. Although typically wastewater outfalls are acidic rather than basic, they 

represent opportunities to study the impacts of altered chemistries on the marine system. Again, these are not strictly 

“natural” analogs, but could provide useful information for the OAE research community.  190 

 

2.3 Extending OAE to geological timescales  

The concept of ocean alkalinity enhancement as a means of carbon sequestration into the ocean is inspired by the 

conceptual mechanics of the long-term carbon cycle of the Earth System. Any additional output of acidic CO2 to the ocean-

atmosphere system, derived from e.g. volcanic outgassing, is thought to be buffered naturally, and therefore stored in the ocean, 195 

on an expanding range of timescales by different components of Earth system alkalinity (Figure 3):  

  

1. Dissolved carbonate alkalinity (titration of CO2 with CO32- to yield HCO3- redistributes additional carbon between 

the different carbonate species in solution (days-years) 

2. Deep ocean calcium carbonate sediment (titration of CO2 with seawater decreases the CO32- ion yielding lower 200 

carbonate saturation which drives deep ocean dissolution and release of alkalinity from carbonate sediments 

through vertical migration of the saturation horizon (7-10 kyrs)  

3. Alkalinity released from increased weathering of silicate rocks as a result of elevated temperatures from additional 

CO2 in the ocean-atmosphere system (Myrs).  

  205 

Geological measures of ocean alkalinity. Any period in geological history when the pH (traced with Boron (B) isotopes in 

foraminifera e.g. Foster et al., 2008) and/or carbonate saturation state of the deep ocean increased is reflective of an increasing 

ratio of total alkalinity to dissolved inorganic carbon (TA/DIC) and can point to a time of elevated ocean alkalinity relative to 

carbon. These periods are often defined relative to geological events, such as the Paleocene-Eocene Thermal Maximum 

(PETM), which corresponds to a very large injection of carbon into the earth system.  210 
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Vertical migrations of the carbonate saturation horizon, at least since the advent of pelagic calcifiers ~220 Ma, 

moderate the deep ocean alkalinity burial to keep it in balance with the supply of alkalinity to the ocean from the release of 

cations through continental weathering. Consequently, the carbonate compensation depth (CCD), defined as the depth beneath 

which there is no preserved carbonate in sediments, and which moves vertically largely in parallel with the saturation horizon, 

provides one of the best proxies for ocean alkalinity. Any deepening reflects increased ocean alkalinity and vice versa but not 215 

necessarily an increase in weathering inputs to the ocean.   

A process of “biological carbonate compensation” can decouple the CCD from weathering due to environmental 

triggers which increase the shelf or pelagic carbonate production and burial above the CCD, and drive a shallowing or vice 

versa (Rickaby et al., 2010; Boudreau et al., 2019). Carbonate Ba/Ca and P/Ca have also been proposed as additional indirect 

measures of ocean alkalinity (Ingalls et al., 2020; Lea and Boyle, 1989). 220 

  

Figure 3: Evolution of (top) atmospheric pCO2 and (bottom) weathering alkalinity flux to the ocean over 1 Myr for a 5000 

Gt C emission pulse with terrestrial carbonate (blue) and silicate (tan) weathering feedbacks activated, using the GENIE 

earth system model with a representation of terrestrial rock weathering. Note the changing timescale (adapted from 

Colbourn et al., 2015). 
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Geological targets to study ocean alkalinity enhancement. The geological periods of enhanced ocean alkalinity are 

characterised by either an increase in the source of alkalinity to the ocean, or a decrease in the sink. The major levers on the 

global alkalinity budget are those of weathering inputs and calcium carbonate burial but smaller contributors include reverse 

and submarine weathering and anaerobic processes. 225 

Robust identification of enhanced weathering rates associated with e.g. elevated temperatures in the geological record 

could indicate a period of elevated ocean alkalinity due to enhanced alkalinity supply to the ocean. Disentangling weathering 

intensity from isotopic proxies such as Sr, Os and Li isotopes is non trivial, but Earth’s weathering thermostat does seem to be 

triggered to aid recovery after abrupt carbon perturbations e.g. of the Mesozoic (Pogge von Strandman et al., 2013) and cap 

carbonates are taken as evidence of an abrupt increase of global weathering rates in the elevated CO2-induced warmth after 230 

Snowball Earth events during the Precambrian. Coupled deepening of the CCD with isotopic signals of weathering likely 

provide the best measure of events of ocean alkalinity enhancement. 

Due to the partitioning of carbonate sediments and alkalinity burial between the shelf and the deep ocean, any periods 

of lowered eustatic sealevel (such as sealevel regression, glacial maxima or ice house periods) which restrict the shelf area for 

carbonate burial, equate to elevated whole ocean alkalinity and a deeper saturation horizon and CCD. The aftermath of major 235 

extinctions involving biomineralisers such as the Permo-Triassic, may be subject to enhanced ocean alkalinity as a result of 

the loss of a major biotic alkalinity sink; indeed immediately prior to the Cambrian explosion of skeletal organisms, both 

saturation state and alkalinity are inferred to be highly elevated, from evidence of abiotic seafloor precipitation, due to the lack 

of a major biotic sink of carbonate.  

Events of burial of organic carbon also perturb the TA:DIC budget by removal of DIC from the ocean-atmosphere 240 

system. Any reduction in DIC elevates the relative ocean alkalinity and can trigger deepening of the carbonate saturation 

horizon as seen during e.g. the regrowth of the terrestrial biosphere at the end of the last glacial maximum (Berger, 1977).  

  
3 Practical considerations for natural analog studies  

 245 
The study of natural analogs is related to, but distinct from, basic research into the cycling of alkalinity and carbon through 

the earth system. Because many different types of researchers may be approaching OAE and its interactions with the earth 

system for the first time, we outline here some practical considerations for field observations and the study of natural systems. 

There are both theoretical and practical constraints to conducting natural analog studies that should be taken into account when 

determining the scope and scale of a campaign. Many of these concepts are either established in earth science, or in some 250 

cases, are still being actively developed as observational networks evolve and mature. 

 

3.1 A primer on geochemical mass balance  

The survey and sampling timescale is important here when considering the spatial/temporal scale of your natural analog (Fig. 

2), the duration of the study, and the types of measurements and platforms used. When constructing a geochemical model of a 255 
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natural system, we typically make the assumption of steady state, or in other words that concentrations are not changing with 

time due to a balance between the inputs and the outputs on the timescale of interest:  

 
!"
!#
= 0 (eq. 1). 

 260 

This assumption allows researchers to assume that spatial gradients represent a balance of rates or fluxes – in other words, 

rates are now expressed as a function of space rather than time. As an example, consider a natural analog study that is 

investigating the removal of alkalinity as river water mixes with ocean water (Fig. 1a, Fig. 4). A survey is conducted, sampling 

down the river, through the plume, and into the ocean. The river flow is unidirectional, and sets up a steady-state gradient 

between solutes in the river and solutes in the ocean. The total salt content, measured as salinity (Smix), is a proxy for the 265 

fractions of river and ocean water in each sample, and an array can be constructed based on these measurements and the known 

salinity of the river (Sriver) and ocean (Socean) end members (Boyle et al., 1974):  

 

 
Figure 4: A schematic of a campaign sampling river water 

(left) out into ocean water (right). Salinity mixes 

conservatively, and by plotting alkalinity versus salinity, 

researchers can examine and quantify processes that 

remove alkalinity from the system as the river flows into 

the ocean. 
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𝑓$%&'$ =	
(!"#)($%&'(
()"*&))	($%&'(

	, (eq. 2a) 

 270 

and mass balance is assumed between these two endmembers:: 

 

𝑓$%&'$ +	𝑓+,'-. = 1 (eq. 2b).  

 

If alkalinity also mixes conservatively, then the samples will fall on a conservative mixing array, i.e.: 275 

 

𝑇𝐴/%0 = 𝑇𝐴$%&'$𝑓$%&'$ + 𝑇𝐴+,'-.𝑓+,'-., (eq. 2c) 

 

where the measured “mixture” value is a linear combination of the river and ocean endmembers.  This relationship indicates 

no addition or removal of alkalinity during the mixing process, and can be confirmed visually by plotting alkalinity versus 280 

salinity: If the data falls on a straight line between the endmember values for salinity and alkalinity, then alkalinity is not being 

produced or consumed in the system (Fig 4). However, if the alkalinity data falls below this conservative mixing line, then 

alkalinity is being removed during the mixing process. Critically, the signal of interest must be larger than the scatter in the 

data to quantitatively establish a reaction process, as illustrated by the scatter of data points in Fig. 4. At steady state, the 

alkalinity loss can be quantified by multiplying the river flux by the difference between these two curves.  285 

The concepts of steady state and (non)conservative mixing are useful frameworks for setting up a study, interpreting 

the results, and quantifying biogeochemical processes over space and time, and can be applied to any water property that mixes 

 
Figure 5: Flowchart for deciding whether the study is suitable as a natural analog 
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linearly. In this river example, DIC-salinity relationships could be used for quantifying carbon uptake and loss due to gas 

exchange, photosynthesis, and calcium carbonate precipitation. For pCO2 and pH, the relationships become more complicated 

because they are nonlinear functions of TA and DIC (Schulz et al., 2023, this volume). In addition, if there are more than two 290 

endmembers interacting in the study area, then this binary mixing model is not appropriate. We discuss other methods of 

analyzing field data in Section 3.5. 

 

3.2 Determining a suitable natural analog location  

  Determining whether a site is a suitable natural analog can be accomplished by asking a series of questions about its 295 

relevance to OAE deployment and/or its MRV (Figure 4). When considering a candidate site, researchers should ask 

themselves: What qualities make the site relevant to OAE? Relevance can be clearly established through the presence of either 

enhanced alkalinity and/or solid materials that are producing alkalinity through interaction with seawater. However, other 

processes such as particle loading and plume mixing may be appropriate even in the absence of large alkalinity gradients 

(Figure 1).  300 

The next consideration is timescale. How fast does the system change, and can alkalinity effects be assessed with an 

effective sampling strategy? Matching the measurement scheme to the process timescale (Figure 2, 3) is critical at this stage, 

and should guide the choice of measurement platform(s) (Section 3.3), and the associated measurement suite (Section 3.4). 

Alkalinity effects can only be assessed through to the counterfactual case, in a similar manner to how MRV will be conducted 

(Ho et al., 2023, this volume). A control or counterfactual, either in space or in time, should be established and should be 305 

quantifiable from the “OAE” condition (Section 3.5). The platform, measurements, and counterfactual conditions will all 

determine the approach for extracting alkalinity effects from the study location (Section 3.5). In some cases, it may be useful 

to pair field observations with models to contextualize your results (Section 3.6).   

In sum, given all of these considerations, it is critical to think through how the results of the study will be synthesized 

into actionable information about OAE deployment and its MRV. For example, if a feedback on alkalinity is established, can 310 

you relate that feedback to alkalinity loading to provide thresholds for OAE deployments, or minimum detection limits for 

MRV? Quantifying efficiencies on CO2 uptake as a function of alkalinity loading are another example of a useful outcome 

from a natural analog. If these questions can be answered, then you have found yourself a natural analog. As shown in Fig. 1, 

rivers and their plumes, glacial fjords, the Black Sea, and whiting events in the Bahamas, immediately stand out as targets for 

natural analog studies.  315 

 

3.3 Choice of platform  

 Once a potential process or site is chosen, it is important to consider what measurements are best suited for the study. 

Measurements can be conducted either in the lab or in the field, on vessels or remotely using autonomous assets (depicted in 

the margins of Fig. 2). Choosing an appropriate platform and measurement suite will depend on the timescale of the process; 320 
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access to equipment and instrumentation; and the practicality of the planned operations. Each platform operates within a 

specific window in both space and time, and these ranges should be considered when planning the field campaign.  

 

Research vessels have been part of the oceanographic toolkit for decades, from small boats all the way to 300+-foot 

global-class ships. These vessels offer flexibility, a range of built-in scientific instrumentation and equipment, 325 

research labs, and well-trained crew. Many research stations around the world operate their own smaller vessels that 

can be chartered for surveys. They can sample across entire ocean basins, but are limited in their temporal coverage 

to at most two months of continuous operation.  

 

Moorings and timeseries can be invaluable for studying a specific location over extended periods of time. Timeseries 330 

stations are critical for establishing the ranges of natural variability, and can be outfitted with a number of sensors 

and instruments. However, their applicability to a broader spatial scale is often limited, without other regional data or 

a model for context.  

 

Satellites can be tasked to investigate ocean-surface processes, and essentially cover the entire planet. Their timescales 335 

are often limited by their orbits, and thus cannot provide very high temporal resolution. Smaller constellations of 

cube-satellites can sometimes be tasked to give very high (sub-meter) resolution, and sometimes multiple transits in 

a single day, but their spatial scales are limited to coastal areas, and many are never tasked for open-ocean work.  

 

Gliders and Uncrewed Surface Vehicles (USVs) are becoming an important part of observational networks. Gliders 340 

can provide high spatial resolution, but their operating speeds are often slower than crewed vessels. Depending on 

the operation, this limitation can be overcome by deploying glider fleets with a suite of intercalibrated sensors. Their 

operations are also limited by power, either batteries or access to solar or wind energy. Currently, gliders cannot 

sample the deep ocean, and can also not operate in very shallow or tightly constrained locations due to navigation 

constraints. Some vehicles can be piloted and reprogrammed on the fly, but many gliders have fixed trajectories that 345 

are set upon deployment.   

 

Profiling floats such as those used for the ARGO and Bio-ARGO program have been immensely helpful for 

establishing state estimates of the global ocean. Integration of biogeochemical sensors is ongoing. However, many 

profiling floats are limited to the open ocean, and cannot operate in coastal or shelf areas with shallow seabeds.  350 

 

Existing geological archives such as sediment cores from drilling programs can be investigated for time periods and 

geological events that are relevant for OAE.  
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3.4 Choice of measurement suite  355 

Oceanographic platforms host a unique set of measurements and capabilities, and come with tradeoffs between 

coverage, what you can measure, and how well you can measure it (Table 1, Bushinsky et al., 2019, Chai et al., 2020). Although 

bottle samples in the lab provide the highest precision and accuracy, they are limited in terms of sample throughput, 

preservation and shipping, and the need for expensive instrumentation. Underway or pumped systems can provide high-

frequency surface data, but can clog/foul and need a source water to be pumped through them. They are best suited for research 360 

vessels or moorings. In situ sensors can provide very high frequency data and be deployed on a range of platforms including 

gliders and profiling float. However, they must be calibrated, they can drift, and they are currently limited in what parameters 

they can measure. Remote sensing from satellites has by far the greatest spatial coverage, but is limited to the surface layer 

and by weather. Data are limited to optical measurements and imagery.  

The natural variability of the site will be important to balance against your analytical capabilities. For instance, if an 365 

estuary experiences tidal changes of >100 µmol kg-1 alkalinity, it may not be informative to take daily samples. In situ sensors 

with lower precision may not be able to detect small alkalinity enhancements above large natural variations. In addition, it is 

important to consider which carbonate chemistry variables are ideally suited for the sampling scheme. Alkalinity and DIC are 

both conservative and can be easily unmixed, but in many cases pH may be more effective as a diagnostic tracer of multiple 

processes (e.g. alkalinity enhancement and subsequent CO2 uptake). Combined with its relatively high measurement precision, 370 

frequency of measurement, and sensor availability, pH may be an attractive parameter for many early studies especially if it 

can be ground-truthed against alkalinity and DIC bottle data.  

 

3.5 Establishing a control  
In natural systems, there may not be a “perfect” control condition; instead, establishing relative changes between 375 

conditions (spatial, temporal, etc.) may be all you can do. However, these relative changes should be clear and measurable 

given the sampling approach you have outlined. Controls can be established both in space and in time. For instance, different 

Table 1: Tradeoffs associated with various measurement approaches. 
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beaches, bays, or fjords can exhibit unique water chemistries and rock/sediment types. Setting up a similar survey or 

measurement scheme in two or more of these locations will yield a dataset that can be easily compared and contrasted.  

Systems also change over time. For instance, the water chemistry, or river state, can be used to compare geochemical 380 

processes when one endmember changes significantly from season to season. As an example, many rivers exhibit different 

solute concentrations and total water fluxes between the dry and rainy seasons. One season’s survey can serve as a control for 

the second survey, provided that the conditions – and the expected geochemical signatures that result – change significantly 

on a seasonal basis. These conditions must be established in the context of the spatial and temporal timescales of the process 

of interest. In addition, similar assumptions for the steady state nature of the surveys should be verified, to ensure that the 385 

results can be effectively compared.  

 

3.6 Isolating alkalinity effects in your data 

One of the main challenges when studying natural analogs in the context of OAE arises from potential concurrent 

effects of various confounding factors (e.g., temperature, salinity, nutrients, light, other carbonate system parameters) varying 390 

in space and/or time along a gradient in TA. Unequivocally attributing specific biogeochemical or ecosystem responses (e.g., 

precipitation of calcium carbonate, species performance and distribution) to a single environmental variable (e.g., TA) remains 

challenging. Targeted monitoring combined with statistical tools can help to assess the impact of confounding factors and 

identify relationships between various covarying factors and specific response variables. The choice of the statistical analysis 

depends on the particular question of interest and the complexity of the system to be studied. 395 

 

Multivariate analyses. Multivariate analyses, such as principal component analysis (PCA), may be useful tools in 

cases where multiple environmental variables are present, with the objective being to determine underlying patterns and 

variability of a particular system without necessary predicting the relationship between a specific dependent (i.e., response) 

and independent (i.e., predictor) variable(s). PCA has been successfully employed to evaluate impacts of hydrography and 400 

carbonate chemistry on species performance along the California Current (Kroeker et al., 2016), to identify empirical 

relationships between physical and biological variables and pCO2 variation across the Mississippi River delta (Lohrenz and 

Cai, 2006), and to determine the main drivers of ‘whiting’ events on the Bahama Banks (Yao et al., 2023). 

 

Simple and multiple linear regression models. Often, the objective of in situ observational studies is to assess the 405 

link between a particular response variable and the variability in one or more predictor variables. A simple linear regression 

analysis specifically assesses the relationship between one continuous predictor variable and one continuous response variable. 

While simple linear regressions may particularly be useful under set laboratory conditions where individual parameters are 

manipulated, in situ or natural experiments are generally more complex and often include multiple environmental factors to 

be investigated simultaneously. Thus, a multiple linear regression (MLR) model can be a useful tool in cases where a response 410 

variable is expected to vary based on two or more predictor variables. Single or multiple linear regression models are 
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commonly used to study links between changes in carbonate chemistry (e.g., TA, pCO2, ΩCalcite) and biogeochemical or 

ecosystem responses (e.g., phytoplankton growth, calcification; Krumhardt et al., 2016; Silbiger et al., 2017). Endmember 

mixing models are common tools along estuarine and coastal systems where large gradients in physico-biochemical parameters 

persist to extract potential sink and source processes of, for instance, alkalinity or DIC from conservative mixing influences 415 

(Figure 4; Guo et al., 2012). 

While general regression models come with clear benefits due to their simplicity, they have some major 

disadvantages. Linear regression models can be restricting in their application given the assumption of linearity between 

dependent and independent variable(s). For example, DIC and TA mix linearly, but pH and pCO2 do not. The model thus may 

perform poorly at capturing the complexity within certain data. In addition, regression models are highly sensitive to missing 420 

values and outliers, particularly in studies with a small sample size. To avoid some of the pitfalls associated with linear 

regression models, it is advised to visually inspect the data and verify that the basic assumptions of the model are met before 

implementing a regression model. For example, graphical tools such as a scatterplot matrix help to verify that the relationships 

between dependent and independent variables are linear. When including multiple predictor variables in MLR models it is 

further advised to evaluate the independent variables for multicollinearity (e.g., independent variables should not be highly 425 

correlated among each other). A simple Pearson’s bivariate correlation matrix allows the identification of highly correlated 

independent variables. Once a model has been implemented, additional useful validation tools to test whether basic 

assumptions are met may include histograms and Normal Q-Q plots to assess normality or scatterplots to check for 

homoscedasticity. 

 430 

Extensions to simple linear models. In cases where particular assumptions are violated (e.g., non-linearity, non-normal 

distribution, heteroscedasticity), extensions to simple linear models may be applied. For example, in cases where data do not 

follow a Gaussian distribution, data transformation may be applied, or a generalized linear model (GLM) for non-normal 

distributions may be implemented. To address non-linearity, possible modifications to the simple linear regression model 

include (1) data transformation, which requires some prior knowledge of the input transformation being performed or (2) 435 

implementing a generalized additive model (GAM). GAMs are extensions of GLMs, yet are more flexible in their application 

as they allow for non-linear relationships between the response variable and predictor variable(s), thus are more suitable for 

describing more complex data sets. Given this higher flexibility, one of the drawbacks of GAMs includes the higher complexity 

and potential associated effects on model interpretability (e.g., non-linear features potentially less intuitive and more 

complicated to interpret). The quantitative comparison of model performance and model selection can be guided using an 440 

analysis of variance (ANOVA) and/or comparative indices such as the Akaike information criterion (AIC), a generalized cross 

validation (GCV) score and/or adjusted R-squared. 

 

3.7 Regional modeling for field data validation 
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Studying natural analogs in the context of OAE has some clear limitations, largely due to the high complexity of the 445 

natural system and the difficulty in isolating the effects of TA from other environmental variables. Regional ocean models 

provide complementary tools that can help to disentangle the effects of confounding factors and determine underlying 

mechanisms driving observed patterns in the field. For example, Gomez et al. (2021) implemented a regional model for the 

Gulf of Mexico and decomposed the carbonate system into individual components (e.g., pCO2, pH, TA, ΩAr) to determine 

their relative importance on overall OA progression and assess specific impacts of increased riverine alkalinity from the 450 

Mississippi River. 

Regional models provide a verification framework for underlying physical and biogeochemical processes occurring 

in a system and, as such, can be a valuable tool to test our conceptual understanding of specific processes. Coupled physical-

biogeochemical models to evaluate artificial ocean alkalinization on a regional scale are emerging (e.g., Butenschön et al., 

2021, Mongin et al., 2021; Wang et al., 2023; see Fennel et al., 2023, this volume, for details), yet similar modeling exercises 455 

applied to validate physical and biogeochemical processes along natural gradients are currently limited. Implementing a 

regional model, for example, in areas where natural ‘whiting’ events occur (e.g., Bahama Banks) could be useful to test some 

of the various proposed mechanisms (e.g., abiotic/biotic calcification, sediment resuspension) leading to the observed 

accumulation of suspended calcium-rich particles in the water column (e.g., Larson & Mylroie, 2014; Yao et al., 2023). Recent 

model simulation implemented a point-source OAE approach in the Bering Sea to evaluate the efficiency in CO2 removal 460 

associated with a TA addition (Wang et al., 2023). Similar approaches could give valuable insights when applied to natural 

analogs, for example to study the dispersal of an alkaline river plume and associated impacts on pCO2 and carbonate chemistry, 

porewater alkalinity fluxes, or the interaction of mineral dissolution and circulation in enclosed basins.  

In addition to hypothesis testing, models provide a means to increase the spatio-temporal resolution of in situ 

observations. The coverage of in situ observational data is often spatially and temporally limited due to logistical constraints 465 

(e.g., financial constraints, rare or remote location of natural analog) and/or natural variability of the system (e.g., seasonality, 

episodic occurrence), which can make replication challenging. Using ocean models in conjunction with natural (and field) 

studies allows to extrapolate spatially and temporally and fill in gaps in field observations. 

In turn, models are evaluated in regard to how well observed patterns are reproduced, giving insights into underlying 

processes and how well these are represented in model parameterization. As such, model simulations rely on underlying 470 

assumptions that may not fully reproduce the high complexity and observational pattern of the natural system, in particular in 

regard to complex biological interactions (e.g., TA loss through carbonate mineral precipitation, trophic interactions, 

acclimation). For steady state systems (e.g., Black Sea), models are currently unable to capture the adaptive response of the 

phytoplankton community to chronic high-TA exposure. Natural analogs provide an opportunity to study long-term responses, 

and to continue developing modeling tools that are capable of resolving critically important biogeochemical processes.  475 

 

4 Conclusions and considerations for future natural analogs 
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Studying natural analogs in the context of OAE is currently to some degree hindered by the availability and quality 

of oceanographic data. The ongoing expansion of the observational infrastructure, including the deployment of autonomous 

vehicles such as gliders and BGC-Argo floats, continuously increases data coverage, quality and availability, making it 480 

progressively easier and cheaper to study natural analogs. In situ profiling platforms such as Argo floats are particularly useful 

for off-shelf regional and basin-scale studies. Autonomous platforms allow the expansion from remotely-sensed surface 

observations (e.g., satellite observations) to high resolution depth profiles, enabling the study of depth-resolved physical and 

biogeochemical processes. Recent examples relevant for OAE include the depth-resolved detection of coccolithophores using 

BGC-Argo floats (Terrats et al., 2020), increasing the spatial and temporal resolution of ship-based observations and expanding 485 

previous satellite-derived estimates to well below the surface layer. 

The list of natural analogs and targets in the geological record highlighted in this chapter is by no means exclusive 

and additional suitable natural sites are likely to be identified as additional questions in the context of OAE arise. Natural 

analogs with potentially different natural gradients, spatio-temporal resolutions and/or processes that are not accounted for yet 

in current surveys may be studied as sensor development and the ability to measure additional parameters evolve. Identifying 490 

key biogeochemical processes and ecosystem responses that can be measured and empirically linked to impacts of enhanced 

alkalinity is crucial in advancing our understanding of potential OAE impacts. Combining natural observational studies with 

controlled small-scale field manipulation or laboratory experiments will be key for addressing knowledge gaps and questions 

in regard to specific biogeochemical reactions, spatial/temporal patterns and species interactions currently emerging from 

ongoing observational surveys. Importantly, no single approach will be able to resolve the full spatial and temporal extent and 495 

complexity of the system, and a combination of approaches (field studies, laboratory experiments, modeling exercises) will be 

required to address different physical and biogeochemical processes and levels of complexity.  
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